By using our services, you agree to our Privacy Policy. Click to accept.
150 chances to become an millionaire

150 chances to become an millionaire

wildsbet.com

#big wins#winners#games#casinos

Back Bonding in Chemistry | Problems & Applications | IIT Jee Mains, Advance, BITSAT, NEET & AIIMS Video

Hello Guys,
we already have discussed about "Back Bonding in Chemistry" in details in previous video.
Now, Today we are going to discuss different problems and applications of Back Bonding in Organic & Inorganic Chemistry.

π backbonding, also called π backdonation, is a concept from chemistry in which electrons move from an atomic orbital on one atom to a π* antibonding orbital on a π-acceptor ligand. It is especially common in the organometallic chemistry of transition metals with multi-atomic ligands such as carbon monoxide, ethylene or the nitrosonium cation. Electrons from the metal are used to bond to the ligand, in the process relieving the metal of excess negative charge. Compounds where π backbonding occurs include Ni(CO)4 and Zeise's salt. IUPAC offers the following definition for backbonding:

A description of the bonding of π-conjugated ligands to a transition metal which involves a synergic process with donation of electrons from the filled π-orbital or lone electron pair orbital of the ligand into an empty orbital of the metal (donor–acceptor bond), together with release (back donation) of electrons from an nd orbital of the metal (which is of π-symmetry with respect to the metal–ligand axis) into the empty π*-antibonding orbital of the ligand.

The electrons are partially transferred from a d-orbital of the metal to anti-bonding molecular orbitals of CO (and its analogues). This electron-transfer (i) strengthens the metal–C bond and (ii) weakens the C–O bond. The strengthening of the M–CO bond is reflected in increases of the vibrational frequencies for the M–C bond (often outside of the range for the usual IR spectrophotometers). Furthermore, the M–CO bond length is shortened. The weakening of the C–O bond is indicated by a decrease in the wavenumber of the νCO band(s) from that for free CO (2143 cm−1), for example to 2060 cm−1 in Ni(CO)4 and 1981 cm−1 in Cr(CO)6, and 1790 cm−1 in the anion [Fe(CO)4]2−.[4] For this reason, IR spectroscopy is an important diagnostic technique in metal–carbonyl chemistry. The article infrared spectroscopy of metal carbonyls discusses this in detail.

Many ligands other than CO are strong "backbonders". Nitric oxide is an even stronger π-acceptor than is CO and νNO is a diagnostic tool in metal–nitrosyl chemistry. Isocyanides, RNC, are another class of ligands that are capable of π-backbonding. In contrast with CO, the σ-donor lone pair on the C atom of isocyanides is antibonding in nature and upon complexation the CN bond is strengthened and the νCN increased. At the same time, π-backbonding lowers the νCN. Depending on the balance of σ-bonding versus π-backbonding, the νCN can either be raised (for example, upon complexation with weak π-donor metals, such as Pt(II)) or lowered (for example, upon complexation with strong π-donor metals, such as Ni(0)). For the isocyanides, an additional parameter is the MC=N–C angle, which deviates from 180° in highly electron-rich systems. Other ligands have weak π-backbonding abilities, which creates a labilization effect of CO, which is described by the cis effect.

-------------------------------------------------------------------------------------
Watch Back Bonding in Details (Theory & Explanation)

https://www.youtube.com/watch?v=aoe5gYq9wDA
--------------------------------------------------------------------------------------

Thanks for Watching
Team IITian explains

-~-~~-~~~-~~-~-
Please watch: "Tricks for dpi - ppi Bonding | Explained by IITian | Jee Mains, Advance, BITSAT, NEET & AIIMS"
https://www.youtube.com/watch?v=ca1GZPqvcw8
-~-~~-~~~-~~-~-

About the Site 🌐

This site provides links to random videos hosted at YouTube, with the emphasis on random. 🎥

Origins of the Idea 🌱

The original idea for this site stemmed from the need to benchmark the popularity of a video against the general population of YouTube videos. 🧠

Challenges Faced 🤔

Obtaining a large sample of videos was crucial for accurate ranking, but YouTube lacks a direct method to gather random video IDs.

Even searching for random strings on YouTube doesn't yield truly random results, complicating the process further. 🔍

Creating Truly Random Links 🛠️

The YouTube API offers additional functions enabling the discovery of more random videos. Through inventive techniques and a touch of space-time manipulation, we've achieved a process yielding nearly 100% random links to YouTube videos.

About YouTube 📺

YouTube, an American video-sharing website based in San Bruno, California, offers a diverse range of user-generated and corporate media content. 🌟

Content and Users 🎵

Users can upload, view, rate, share, and comment on videos, with content spanning video clips, music videos, live streams, and more.

While most content is uploaded by individuals, media corporations like CBS and the BBC also contribute. Unregistered users can watch videos, while registered users enjoy additional privileges such as uploading unlimited videos and adding comments.

Monetization and Impact 🤑

YouTube and creators earn revenue through Google AdSense, with most videos free to view. Premium channels and subscription services like YouTube Music and YouTube Premium offer ad-free streaming.

As of February 2017, over 400 hours of content were uploaded to YouTube every minute, with the site ranking as the second-most popular globally. By May 2019, this figure exceeded 500 hours per minute. 📈

List of ours generators⚡

Random YouTube Videos Generator

Random Film and Animation Video Generator

Random Autos and Vehicles Video Generator

Random Music Video Generator

Random Pets and Animals Video Generator

Random Sports Video Generator

Random Travel and Events Video Generator

Random Gaming Video Generator

Random People and Blogs Video Generator

Random Comedy Video Generator

Random Entertainment Video Generator

Random News and Politics Video Generator

Random Howto and Style Video Generator

Random Education Video Generator

Random Science and Technology Video Generator

Random Nonprofits and Activism Video Generator

By using our services, you agree to our Privacy Policy.
Alternative random YouTube videos generator: vTomb

YoutuBeRandom © 2024