By using our services, you agree to our Privacy Policy. Click to accept.
150 chances to become an millionaire

150 chances to become an millionaire

wildsbet.com

#big wins#winners#games#casinos

Tricks for Qualitative Analysis | Cations | Jee Mains, Advance, NEET, BITSAT and AIIMS Video

Hello Guys, Memorizing Qualitative analysis isn't a good idea at all. So, IITian explains is going to make it easiest ever. Learn some super crazy tricks for Salt analysis.
Qualitative Cation Analysis
The composition of relatively complex mixtures of metal ions can be determined using qualitative analysis, a procedure for discovering the identity of metal ions present in the mixture (rather than quantitative information about their amounts). The procedure used to separate and identify more than 20 common metal cations from a single solution consists of selectively precipitating only a few kinds of metal ions at a time under given sets of conditions. Consecutive precipitation steps become progressively less selective until almost all of the metal ions are precipitated.
Group 1: Insoluble Chlorides
Most metal chloride salts are soluble in water; only Ag+, Pb2+, and Hg22+ form chlorides that precipitate from water. Thus the first step in a qualitative analysis is to add about 6 M HCl, thereby causing AgCl, PbCl2, and/or Hg2Cl2 to precipitate. If no precipitate forms, then these cations are not present in significant amounts. The precipitate can be collected by filtration or centrifugation.

Group 2: Acid-Insoluble Sulfides
Next, the acidic solution is saturated with H2S gas. Only those metal ions that form very insoluble sulfides, such as As3+, Bi3+, Cd2+, Cu2+, Hg2+, Sb3+, and Sn2+, precipitate as their sulfide salts under these acidic conditions. All others, such as Fe2+ and Zn2+, remain in solution. Once again, the precipitates are collected by filtration or centrifugation.

Group 3: Base-Insoluble Sulfides (and Hydroxides)
Ammonia or NaOH is now added to the solution until it is basic, and then (NH4)2S is added. This treatment removes any remaining cations that form insoluble hydroxides or sulfides. The divalent metal ions Co2+, Fe2+, Mn2+, Ni2+, and Zn2+ precipitate as their sulfides, and the trivalent metal ions Al3+ and Cr3+ precipitate as their hydroxides: Al(OH)3 and Cr(OH)3. If the mixture contains Fe3+, sulfide reduces the cation to Fe2+, which precipitates as FeS.

Group 4: Insoluble Carbonates or Phosphates
The next metal ions to be removed from solution are those that form insoluble carbonates and phosphates. When Na2CO3 is added to the basic solution that remains after the precipitated metal ions are removed, insoluble carbonates precipitate and are collected. Alternatively, adding (NH4)2HPO4 causes the same metal ions to precipitate as insoluble phosphates.
Group 5: Alkali Metals
At this point, we have removed all the metal ions that form water-insoluble chlorides, sulfides, carbonates, or phosphates. The only common ions that might remain are any alkali metals (Li+, Na+, K+, Rb+, and Cs+) and ammonium (NH4+). We now take a second sample from the original solution and add a small amount of NaOH to neutralize the ammonium ion and produce NH3. (We cannot use the same sample we used for the first four groups because we added ammonium to that sample in earlier steps.) Any ammonia produced can be detected by either its odor or a litmus paper test. A flame test on another original sample is used to detect sodium, which produces a characteristic bright yellow color. The other alkali metal ions also give characteristic colors in flame tests, which allows them to be identified if only one is present.
Metal ions that precipitate together are separated by various additional techniques, such as forming complex ions, changing the pH of the solution, or increasing the temperature to redissolve some of the solids. For example, the precipitated metal chlorides of group 1 cations, containing Ag+, Pb2+, and Hg22+, are all quite insoluble in water. Because PbCl2 is much more soluble in hot water than are the other two chloride salts, however, adding water to the precipitate and heating the resulting slurry will dissolve any PbCl2 present. Isolating the solution and adding a small amount of Na2CrO4 solution to it will produce a bright yellow precipitate of PbCrO4 if Pb2+ were in the original sample.
Summary
In qualitative analysis, the identity, not the amount, of metal ions present in a mixture is determined. The technique consists of selectively precipitating only a few kinds of metal ions at a time under given sets of conditions. Consecutive precipitation steps become progressively less selective until almost all the metal ions are precipitated. Other additional steps are needed to separate metal ions that precipitate together.
Thanks
Team IITian explains
-----------------------------------------------------------------------------
Watch our other videos
tricks to remember p block reaction
https://www.youtube.com/watch?v=GSxtE_nzkyE
------------------------------------------------------------------------------

About the Site 🌐

This site provides links to random videos hosted at YouTube, with the emphasis on random. πŸŽ₯

Origins of the Idea 🌱

The original idea for this site stemmed from the need to benchmark the popularity of a video against the general population of YouTube videos. 🧠

Challenges Faced πŸ€”

Obtaining a large sample of videos was crucial for accurate ranking, but YouTube lacks a direct method to gather random video IDs.

Even searching for random strings on YouTube doesn't yield truly random results, complicating the process further. πŸ”

Creating Truly Random Links πŸ› οΈ

The YouTube API offers additional functions enabling the discovery of more random videos. Through inventive techniques and a touch of space-time manipulation, we've achieved a process yielding nearly 100% random links to YouTube videos.

About YouTube πŸ“Ί

YouTube, an American video-sharing website based in San Bruno, California, offers a diverse range of user-generated and corporate media content. 🌟

Content and Users 🎡

Users can upload, view, rate, share, and comment on videos, with content spanning video clips, music videos, live streams, and more.

While most content is uploaded by individuals, media corporations like CBS and the BBC also contribute. Unregistered users can watch videos, while registered users enjoy additional privileges such as uploading unlimited videos and adding comments.

Monetization and Impact πŸ€‘

YouTube and creators earn revenue through Google AdSense, with most videos free to view. Premium channels and subscription services like YouTube Music and YouTube Premium offer ad-free streaming.

As of February 2017, over 400 hours of content were uploaded to YouTube every minute, with the site ranking as the second-most popular globally. By May 2019, this figure exceeded 500 hours per minute. πŸ“ˆ

List of ours generators⚑

Random YouTube Videos Generator

Random Film and Animation Video Generator

Random Autos and Vehicles Video Generator

Random Music Video Generator

Random Pets and Animals Video Generator

Random Sports Video Generator

Random Travel and Events Video Generator

Random Gaming Video Generator

Random People and Blogs Video Generator

Random Comedy Video Generator

Random Entertainment Video Generator

Random News and Politics Video Generator

Random Howto and Style Video Generator

Random Education Video Generator

Random Science and Technology Video Generator

Random Nonprofits and Activism Video Generator

By using our services, you agree to our Privacy Policy.
Alternative random YouTube videos generator: vTomb

YoutuBeRandom Β© 2024